Sort by
Protein multiplicity can lead to misconduct in western blotting and misinterpretation of immunohistochemical staining results, creating much conflicting data

Western blotting (WB) and immunohistochemical staining (IHC) are common techniques for determining tissue protein expression. Both techniques require a primary antibody specific for the protein in question. WB data is band(s) on a membrane while IHC result is a staining on a tissue section. Most human genes are known to produce multiple protein isoforms; in agreement with that, multiple bands are often found on the WB membrane. However, a common but unspoken practice in WB is to cut away the extra band(s) and present for publication only the band of interest, which implies to the readers that only one form of protein is expressed and thus the data interpretation is straightforward. Similarly, few IHC studies discuss whether the antibody used is isoform-specific and whether the positive staining is derived from only one isoform. Currently, there is no reliable technique to determine the isoform-specificity of an antibody, especially for IHC. Therefore, cutting away extra band(s) on the membrane usually is a form of misconduct in WB, and a positive staining in IHC only indicates the presence of protein product(s) of the to-be-interrogated gene, and not necessarily the presence of the isoform of interest. We suggest that data of WB and IHC involving only one antibody should not be published and that relevant reports should discuss whether there may be protein multiplicity and whether the antibody used is isoform-specific. Hopefully, techniques will soon emerge that allow determination of not only the presence of protein products of genes but also the isoforms expressed.

Open Access
Relevant
Intracellular and extracellular microRNA: An update on localization and biological role

MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.

Relevant
Low Voltage Transmission Electron Microscopy in Cell Biology

Low voltage transmission electron microscopy (LVTEM) was employed to examine biological tissues with accelerating voltages as low as 5kV. Tissue preparation was modified to take advantage of the low-voltage techniques. Treatments with heavy metals, such as post-fixation with osmium tetroxide, on block and counterstaining were omitted. Sections (40nm) were thinner than usual and generated highly contrasted images. General appearance of the cells remains similar to that of conventional TEM. New features were however revealed. The matrix of the pancreatic granules displays heterogeneity with partitions that may correspond to the inner-segregation of their secretory proteins. Mitochondria revealed the presence of the ATP synthase granules along their cristea. The nuclear dense chromatin displayed a honeycomb organization while distinct beads, nucleosomes, aligned along thin threads were seen in the dispersed chromatin. Nuclear pore protein complexes revealed their globular nature. The intercalated disks in cardiac muscle displayed their fine structural organization. These features correlate well with data described or predicted by cell and molecular biology. These new aspects are not revealed when thicker and conventionally osmicated tissue sections were examined by LVTEM, indicating that major masking effects are associated with standard TEM techniques. Immunogold was adapted to LVTEM further enhancing its potential in cell biology.

Relevant